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Abstract Relativistic basis sets of quadruple-zeta quality
have been optimized at the self-consistent field (SCF) level
with a Gaussian nuclear charge distribution for the 4p, 5p
and 6p elements. To these sets, a valence correlating 3d2f1g
set was optimized in multireference CI calculations on the
valence pn states, and a correlating 3f2g1h set was optimized
on the same states, to correlate the (n − 1)d shell. The SCF
d sets were reoptimized with the valence correlating d set
included in the SCF calculation and held fixed. The d sets of
the double-zeta and triple-zeta basis sets reported previously
were also reoptimized in this manner, and a larger s set was
introduced into the double-zeta basis sets for the 5p elements.
Likewise, the SCF f sets for the 6p elements were reoptim-
ized with the valence correlating f functions added and held
fixed. Prescriptions are given for constructing contracted ba-
sis sets. The basis sets are available as an internet archive and
from the Dirac program web site, http://dirac.chem.sdu.dk.

Keywords Gaussian basis sets · Relativistic basis sets ·
p-block elements · Quadruple zeta · Correlating functions

1 Introduction

Since calculations on molecules containing heavy elements
using all-electron relativistic methods have become more
popular, a demand for appropriate basis sets has arisen. Sev-
eral groups are working actively on this issue, and have pub-
lished a number of basis sets [1–14]. However, most of the
the basis sets developed do not include polarization, diffuse,
or correlating functions. This deficiency has been remedied
in part by Osanai et al., with their contracted correlating sets
[15–17], by Fægri [7], via determination of optimal MP2
energies in an even-tempered set, and by the author [8–11],
in the style of the correlation-consistent basis sets [18–21].
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The development of relativistic basis sets has been reviewed
in a recent article by Fægri and the author [22].

Basis set development for the heavy elements has not been
limited to all-electron methods. There are a number of basis
sets now becoming available for effective core potentials or
pseudopotentials [23–27] and model potentials [15–17] that
include correlating functions.

This paper is the fourth in a series reporting basis set opti-
mizations for the heavy elements. The goal of this series is
to provide relativistically optimized basis sets of double-zeta,
triple-zeta, and quadruple-zeta quality, including correlating
functions for the valence and outer core, diffuse functions,
and dipole polarization functions. The first paper presented
double-zeta basis sets for the 4p, 5p and 6p elements [8].
These basis sets are adequate for qualitative and semi quan-
titative calculations, but for higher accuracy, larger basis sets
are needed. The second presented triple-zeta basis sets for
the same elements [10], while a third paper presented dou-
ble-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d
elements [11]. In this paper, the series of basis sets for the
p-block elements is completed with quadruple-zeta basis sets,
and revisions to the double-zeta and triple-zeta basis sets are
presented, based on experience gained from ongoing basis
set development.

2 Methods

The methods used have been described previously [8,10,28,
29]. The basis sets are optimized in Dirac–Hartree–Fock cal-
culations using the Dirac Hamiltonian. As for the previous
basis sets, �-optimization was employed. In the SCF optimi-
zations, the exponents are varied only within a given angular
space, i.e. for a given � value, with all other exponents fixed.
The exponents in each angular space are to a large degree
independent of those in the other angular spaces. The angu-
lar spaces are cycled through the optimization process until
there is no significant change in the total energy and the gra-
dient with respect to the logarithms of the exponents. Usually
only two cycles are required.
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For example, for Tl, the starting basis set is taken from
Pb. The s exponents are optimized with the p and d exponents
fixed. Likewise, the p exponents are optimized with the s and
d exponents fixed, and the d exponents are optimized with the
s and p exponents fixed. The optimized exponents from all
three calculations are then combined to form a new starting
set, and the s exponents, the p exponents, and the d expo-
nents are again optimized in three separate calculations with
all other exponents fixed.

The size of the basis sets was determined by a series
of optimizations on the rare gas atoms. The series was deter-
mined by first fully optimizing a reference basis set, then per-
forming optimizations within each angular space for different
numbers of exponents with the exponents in the other angular
spaces fixed. The criteria of balance between the energy gain
in each angular space for the addition of the next function
and representation of the outermost maximum of both the n
and n − 1 shells were employed to decide on the optimum
basis set.

Extensions to the SCF basis sets were determined in the
style of the correlation consistent basis sets [16–21]. Valence
correlation functions were optimized in MR-SDCI calcula-
tions on the average energy of the valence s2pn states within
a 3s3p3d2f1g correlating space. The s and p correlating func-
tions were taken to be the first, third, and fourth outermost
functions from the SCF set. Subsequent MR-SDCI calcula-
tions showed that there is only a small amount of variation
due to different choices of the s and p correlating functions.
One diffuse s function and one diffuse p function were deter-
mined in SCF calculations for the negative ion. Diffuse d, f,
and g functions were optimized for the negative ion in MR-
SDCI calculations within a 4s4p4d3f2g correlating space
consisting of the valence 3s3p3d2f1g space supplemented
by a 1s1p1d1f1g diffuse set, with the diffuse s and p func-
tions taken from the SCF negative ion optimizations and held
fixed. Correlating functions for the (n − 1)d shell were opti-
mized in MR-SDCI calculations in which double excitations
out of the d shell into a 3f2g1h correlating space were in-
cluded. The angular momentum resulting from the coupling
of the d shell to the correlating functions was constrained to a
zero value, so that the correlating configurations represented
only d-shell correlation.

The CI optimizations were performed with an adaption
of RAMCI, a Relativistic Atomic Multireference Configura-
tion Interaction program developed by the author [24]. In this
adaption, 4-spinors consisting of a single Gaussian function
with the large and small components determined by diag-
onalizing the kinetic energy matrix are used as correlating
functions in a multireference CI calculation. The exponents
are optimized using the same second-order algorithm as in
the SCF optimization program, with the gradient and Hessian
calculated by finite differences.

Following the optimization of the valence correlating func-
tions, the d sets were reoptimized with the outermost two
functions replaced by the three functions from the correlating
set, which were held fixed. The f set for the 6p elements was
also reoptimized with the two correlating f functions added

and held fixed. In this way, a single exponent set is obtained.
This procedure represents a compromise for the correlating
f functions for the 5d shell in the 6p elements, because of
the overlap with the occupied 4f. Replacement correlating f
functions for the 5d were determined by performing the same
MR-SDCI calculations as used for optimizing the correlating
f functions, but varying the selection of f exponents used for
correlation.

To determine which primitive functions should be un-
contracted, a sequence of MR-SDCI calculations was per-
formed in which different primitive functions were included
in the correlating space. For each basis set size, the appro-
priate number of primitive functions was used in the MRCI
calculations. The large and small component coefficients of
these correlating functions were determined by diagonalizing
the Fock matrix in the space of the DHF occupied functions
plus the primitive functions, and orthogonalizing the resul-
tant functions to the DHF occupied functions. For the valence
space it was found necessary to perform the MR-SDCI calcu-
lations for all elements because of the variation in correlation
energy across the rows. For the correlation of the (n − 1)d
there was little variation from the early part of the block to the
later part, so calculations were performed only for a selection
of elements.

MRCI calculations on the spin–orbit splitting of Tl have
been carried out to demonstrate the validity of the basis sets,
using the RAMCI program.

3 Primitive basis sets

The SCF basis set sizes chosen for the quadruple zeta basis
were 30s21p12d for the 4p block, 33s27p17d for the 5p block,
and 34s31p20d12f for the 6p block. After replacement of the
outer two d functions with the valence correlating d set for
all elements, and addition of the valence correlating f set to
the 6p elements, the reoptimized basis sets are 30s21p13d for
the 4p block, 33s27p18d for the 5p block, and 34s31p21d14f
for the 6p block.

The s set for the 6p block has only one more function
than the s set for the 5p. In all the other angular spaces, the
increase from 4p to 5p to 6p is several functions. There are
several factors in this apparently anomalous behavior. The
finite nucleus imposes a maximum size on the largest expo-
nent in the basis set. The nuclear radius increases with Z , and
the maximum exponent correspondingly decreases. So, for
example, the largest s exponent for Xe is about 8 × 107, but
for Rn it is 6×107. This phenomenon was first noted by Vis-
ser et al. [30]. Combined with this limit, the decrease in the
radial extent of the spinors means that there are fewer func-
tions needed to describe the 1s function. The extent of the 1s
function can be marked by the change in sign of the coeffi-
cients in the 2s spinor. This change occurs after 16 functions
for Rn, but after 18 functions for Xe, and the exponent before
the change is three times larger in Rn than in Xe. A third fac-
tor is that the mean radius of the 5s in Xe is almost the same
as the mean radius of the 6s in Rn, due to both relativistic
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Table 1 Total energies in Eh of quadruple-zeta basis set and numerical
SCF calculations and differences between the two for the 4p neutral
atoms and negative ions

Neutral atom Negative ion

Ga
Basis −1942.563744 −1942.551159
Numeric −1942.563764 −1942.551218
Difference 0.000020 0.000059

Ge
Basis −2097.470340 −2097.476204
Numeric −2097.470361 −2097.476228
Difference 0.000021 0.000024

As
Basis −2259.441891 −2259.472365
Numeric −2259.441912 −2259.472395
Difference 0.000021 0.000030

Se
Basis −2428.588245 −2428.647937
Numeric −2428.588274 −2428.647965
Difference 0.000029 0.000028

Br
Basis −2605.023461 −2605.116442
Numeric −2605.023485 −2605.116465
Difference 0.000024 0.000023

Kr
Basis −2788.860597
Numeric −2788.860624
Difference 0.000027

contraction of the s spinors and the lanthanide contraction.
This means that the s functions between the 1s and the ns
must fit into essentially the same space, and the functions in
Rn are more compressed than those in Xe.

Total energies of the neutral atoms and the negative ions
for the reoptimized SCF basis sets are compared in Tables 1,
2, and 3 with the numerical limits. As for the 5d elements,
the energies for the 6p elements are lower than the numer-
ical energies. In addition, the energies for some the 5p ele-
ments go below the exact energy by a small amount. This
is because the lower bound on the energy for the exponent
optimization is lower than the exact energy by order c−4 —
a phenomenon known as “prolapse” [6]. This is not a varia-
tional collapse because there is a lower bound: the bound is
simply not the exact energy. To obtain the exact energy, the
relation between the large- and small-component primitive
basis functions would have to go beyond the kinetic bal-
ance prescription [31]. This problem probably matters only
for properties that are sensitive to the details of the wave
function near the nucleus [32], and for these properties an
even-tempered set covers the space better.

The selection of a p set for the 6p elements is complicated
by the spin–orbit splitting. At the beginning of the block, the
four smallest exponents are shared by the 6p1/2 and the 6p3/2.
By the end of the block, the main contributions to the outer
maximum of the 6p1/2 come from the second through the
fifth smallest exponents, whereas for the outer maximum of
the 6p3/2 the first through the fourth smallest exponents are
the main contributors. The coefficients for the five smallest
functions are shown in Table 4. This kind of change did not
happen for the dz and tz basis sets because the energy changes
with the variation in exponents is larger and the spacing of

Table 2 Total energies in Eh of quadruple-zeta basis set and numerical
SCF calculations and differences between the two for the 5p neutral
atoms and negative ions

Neutral atom Negative ion

In
Basis −5880.431579 −5880.424228
Numeric −5880.431582 −5880.424262
Difference 0.000003 0.000034

Sn
Basis −6176.128087 −6176.139870
Numeric −6176.128089 −6176.139876
Difference 0.000002 0.000006

Sb
Basis −6480.518627 −6480.553997
Numeric −6480.518627 −6480.553998
Difference 0.000000 0.000001

Te
Basis −6793.698968 −6793.761232
Numeric −6793.698968 −6793.761230
Difference 0.000000 −0.000002

I
Basis −7115.794178 −7115.886268
Numeric −7115.794175 −7115.886265
Difference −0.000003 −0.000003

Xe
Basis −7446.895444
Numeric −7446.895440
Difference −0.000004

Table 3 Total energies in Eh of quadruple-zeta basis set and numerical
SCF calculations and differences between the two for the 6p neutral
atoms and negative ions

Neutral atom Negative ion

Tl
Basis −20274.851084 −20274.843085
Numeric −20274.850644 −20274.842721
Difference −0.000440 −0.000364

Pb
Basis −20913.714794 −20913.726266
Numeric −20913.714332 −20913.725813
Difference −0.000462 −0.000453

Bi
Basis −21565.706648 −21565.742217
Numeric −21565.706080 −21565.741649
Difference −0.000568 −0.000568

Po
Basis −22231.013820 −22231.076534
Numeric −22231.013179 −22231.075893
Difference −0.000641 −0.000641

At
Basis −22909.808337 −22909.900808
Numeric −22909.807616 −22909.900086
Difference −0.000721 −0.000722

Rn
Basis −23602.105077
Numeric −23602.104246
Difference −0.000821

the exponents is larger. There is, nevertheless, a difference
in the coefficient sizes in the dz and tz basis sets due to the
spin-orbit effect.

The exponents of the valence correlating 3d2f1g func-
tions are presented in Table 5, and the exponents of the core
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Table 4 Coefficients of the outermost five p functions for the 6p block

Tl Pb Bi Po At Rn

6p1/2 −0.0033 −0.0329 0.0322 0.0144 0.0559 0.0701
0.2516 0.2744 0.3567 0.3820 0.4085 0.4277
0.4547 0.4784 0.4732 0.4870 0.4721 0.4686
0.3722 0.3524 0.2740 0.2559 0.2325 0.2177
0.0767 0.0632 0.0371 0.0303 0.0253 0.0219

6p3/2 −0.0736 −0.1037 −0.0627 −0.0908 −0.0643 −0.0617
0.1428 0.1643 0.2443 0.2589 0.2888 0.3059
0.3976 0.4298 0.4540 0.4732 0.4693 0.4728
0.4594 0.4394 0.3791 0.3685 0.3505 0.3404
0.1719 0.1486 0.1061 0.0967 0.0888 0.0835

correlating 3f2g1h functions are presented in Table 6. The
diffuse 1s1p1d1f1g set is presented in Table 7.

The revision of the tz basis sets consisted entirely of the
reoptimization of the d and f exponents after addition of the
valence correlating set. For the d sets, the smallest exponent
was replaced by the two valence correlating exponents. For
the f set in the 6p block, the two smallest exponents were
replaced by the core correlating f exponents. The final basis
set sizes including the d valence correlating functions are
23s16p11d for the 4p block, 28s21p15d for the 5p block, and
30s26p17d10f for the 6p block.

In addition to the reoptimization of the d sets, the revision
of the dz basis sets included a change from 19s to 21s for the
5p block. This larger s set is more in keeping with the basis
sets for the other p blocks and with the increase in size from
dz to tz to qz. The final basis sets now include the d valence
correlating function, to give basis set sizes of 15s11p7d for
the 4p block, 21s15p11d for the 5p block, and 24s20p14d8f
for the 6p block.

These reoptimized basis sets are available as an internet
archive and from the Dirac web site, http://dirac.chem.sdu.dk.

4 Contraction patterns

The MR-SDCI calculations that were performed to determine
which functions to uncontract yielded the contraction pat-
terns described below. The contracted basis sets are formed
by adding primitive functions to the SCF occupied spinor or
orbital set. Two primary contraction patterns are described: a
valence basis set, which correlates the ns and np orbitals; and
a valence + outer core set which adds functions for (n − 1)d
correlation to the valence set. To any of these contractions,
the relevant diffuse functions listed in Table 7 can be added.

Determining the best primitives to uncontract so as to
maximize the correlation energy was not a trivial task for the
qz basis sets. Martin and Sundermann [25] found some var-
iation in the optimum exponent set in their basis sets. Also,
for the qz basis sets, the correlation of the second outermost
radial maximum becomes more important, as the correlation
of the outermost radial maximum is saturated. In the final
basis set, however, a balance must be struck between corre-
lation and valence flexibility.

In all three rows, the choice of the best three s functions
lay between two sets: the first, second, and fourth (denoted
s124), and the third, fourth, and fifth (denoted s345). (The
functions are counted in increasing exponent size from the
smallest.) The variation in correlation energy between these
two sets was no more than 64µEh. The s124 set was chosen
because it provides better valence flexibility.

In the p space, the best set of three p functions was the
third, fourth, and fifth (p345), with one exception, for Sn.
Unlike the s space, there was no single set that was consis-
tently close to this set. All sets of three of the outer four
functions lay within a few hundred microhartrees of each
other, and the gap between these and the p345 set increased
with Z across each row. Any choice for valence flexibility
compromises the valence correlation, by up to 1 mEh.

Correlation is not the only concern, however. The con-
traction pattern just described does not completely address
the valence flexibility issue, for which two of the outermost
three functions should probably be uncontracted. Ultimately,
to obtain accurate results that are worth extrapolating, both
core and valence correlation must be included. It is, therefore,
acceptable to make some compromise on either, provided the
best set is included, or at least a set that does not introduce too
much error. With this principle, any valence set that includes
the third and fourth p functions, combined with a core set
that includes the fifth p function would cover the p345 set for
valence correlation.

In the descriptions below, functions are counted by
increasing exponent size, from the smallest. A designation
of the basis set in terms of the contraction pattern is given
at the end of each description in parentheses. The primitives
are to be taken from the SCF set, which include the valence
correlating d and f functions, where appropriate.

4.1 The 4p block

Valence: To the SCF functions, add the first, second, and
fourth s primitives, the first, third, and fourth p primitives,
the first through third d primitives (the correlating d func-
tions), and the 2f1g functions from the valence correlating
set.
(HF + 3s3p3d2f1g valence)
Valence + outer core: To the valence set add the fifth,
sixth, and seventh s and p primitives, the fourth, sixth,
and seventh d primitives, and the core correlating 3f2g1h
set.
(HF + 3s3p3d2f1g valence + 3s3p3d3f2g1h outer core)

4.2 The 5p block

Valence: To the SCF functions, add the first, second, and
fourth s primitives, the first, third, and fourth p primitives,
the first through third d primitives (the correlating d func-
tions), and the 2f1g functions from the valence correlating
set.
(HF + 3s3p3d2f1g valence)
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Table 5 Exponents of valence correlating 3d2f1g functions for the quadruple-zeta basis sets

Element d d d f f g

Ga 4.31414E − 01 2.09574E − 01 8.31208E − 02 4.90073E − 01 2.04131E − 01 4.18123E − 01
GE 5.22133E − 01 2.52827E − 01 1.03880E − 01 5.08270E − 01 1.88573E − 01 4.52867E − 01
As 6.30122E − 01 3.13728E − 01 1.31060E − 01 5.95325E − 01 2.27300E − 01 5.01829E − 01
SE 7.46981E − 01 3.83603E − 01 1.61868E − 01 7.04177E − 01 2.78907E − 01 5.72879E − 01
Br 8.70267E − 01 4.59929E − 01 1.95251E − 01 8.26947E − 01 3.41663E − 01 6.57431E − 01
Kr 9.99547E − 01 5.42127E − 01 2.30943E − 01 9.61766E − 01 4.18638E − 01 7.51237E − 01

In 3.41626E − 01 1.84821E − 01 7.26728E − 02 4.00472E − 01 1.70976E − 01 3.42677E − 01
Sn 3.95454E − 01 2.15734E − 01 8.83342E − 02 3.99548E − 01 1.51528E − 01 3.57816E − 01
Sb 4.61537E − 01 2.61885E − 01 1.08788E − 01 4.50109E − 01 1.76261E − 01 3.82471E − 01
TE 5.31938E − 01 3.14870E − 01 1.31570E − 01 5.15526E − 01 2.09779E − 01 4.23231E − 01
I 6.05033E − 01 3.72517E − 01 1.55801E − 01 5.88275E − 01 2.50201E − 01 4.73130E − 01
XE 6.77357E − 01 4.31727E − 01 1.80474E − 01 6.65710E − 01 2.99535E − 01 5.28684E − 01

Tl 3.67839E − 01 1.97031E − 01 7.46000E − 02 4.34585E − 01 1.84851E − 01 3.71719E − 01
Pb 4.02082E − 01 2.14896E − 01 8.54398E − 02 4.12384E − 01 1.51905E − 01 3.72401E − 01
Bi 4.47149E − 01 2.46379E − 01 1.00172E − 01 4.47623E − 01 1.75081E − 01 3.80942E − 01
Po 5.06981E − 01 2.90486E − 01 1.19141E − 01 4.93276E − 01 1.98197E − 01 4.04618E − 01
At 5.71596E − 01 3.37614E − 01 1.38925E − 01 5.47768E − 01 2.31051E − 01 4.39719E − 01
Rn 6.46214E − 01 3.89532E − 01 1.60155E − 01 6.05050E − 01 2.71498E − 01 4.80567E − 01

Table 6 Exponents of core correlating 3f2g1h functions for the quadruple-zeta basis sets

Element f f f g g h

Ga 1.22480E + 01 4.13113E + 00 1.39235E + 00 8.49733E + 00 2.70975E + 00 5.42526E + 00
Ge 1.41607E + 01 4.85873E + 00 1.68461E + 00 9.82558E + 00 3.20854E + 00 6.29850E + 00
As 1.61450E + 01 5.61650E + 00 1.99098E + 00 1.12147E + 01 3.73317E + 00 7.21665E + 00
Se 1.82069E + 01 6.40664E + 00 2.31219E + 00 1.26662E + 01 4.28396E + 00 8.17986E + 00
Br 2.03504E + 01 7.23060E + 00 2.64874E + 00 1.41813E + 01 4.86136E + 00 9.18848E + 00
Kr 2.25786E + 01 8.08954E + 00 3.00103E + 00 1.57614E + 01 5.46573E + 00 1.02429E + 01

In 4.56172E + 00 1.83190E + 00 7.22085E − 01 3.03282E + 00 1.20819E + 00 2.34037E + 00
Sn 5.25231E + 00 2.12818E + 00 8.55202E − 01 3.37233E + 00 1.38465E + 00 2.63459E + 00
Sb 6.03497E + 00 2.44816E + 00 9.95627E − 01 3.71690E + 00 1.56501E + 00 2.93676E + 00
Te 6.94341E + 00 2.79719E + 00 1.14495E + 00 4.06794E + 00 1.74990E + 00 3.24762E + 00
I 8.02111E + 00 3.18008E + 00 1.30447E + 00 4.42632E + 00 1.93971E + 00 3.56761E + 00
Xe 9.31703E + 00 3.59951E + 00 1.47483E + 00 4.79265E + 00 2.13467E + 00 3.89682E + 00

Tl 2.62242E + 00 1.20078E + 00 5.02349E − 01 2.18903E + 00 8.97006E − 01 1.69419E + 00
Pb 2.85287E + 00 1.34515E + 00 5.79437E − 01 2.38274E + 00 1.00851E + 00 1.87149E + 00
Bi 3.07888E + 00 1.48801E + 00 6.55663E − 01 2.57432E + 00 1.11913E + 00 2.04857E + 00
Po 3.30316E + 00 1.63085E + 00 7.31829E − 01 2.76539E + 00 1.22968E + 00 2.22627E + 00
At 3.52795E + 00 1.77480E + 00 8.08508E − 01 2.95704E + 00 1.34070E + 00 2.40521E + 00
Rn 3.75343E + 00 1.91980E + 00 8.85746E − 01 3.15004E + 00 1.45256E + 00 2.58583E + 00

Table 7 Exponents of diffuse 1s1p1d1f1g functions for the quadruple-zeta basis sets

Element s p d f g

Ga 1.43951E − 02 8.37490E − 03 2.65498E − 02 6.46165E − 02 1.65550E − 01
Ge 2.05105E − 02 1.37177E − 02 3.64866E − 02 6.68910E − 02 1.82622E − 01
As 2.63040E − 02 1.84298E − 02 4.81977E − 02 8.87179E − 02 2.18444E − 01
Se 3.09295E − 02 2.29359E − 02 6.08413E − 02 1.21981E − 01 2.64189E − 01
Br 3.79754E − 02 2.73861E − 02 7.46061E − 02 1.89006E − 01 3.16365E − 01

In 1.24203E − 02 8.04303E − 03 2.39660E − 02 5.58983E − 02 1.39331E − 01
Sn 1.76513E − 02 1.23810E − 02 3.18999E − 02 5.55347E − 02 1.49230E − 01
Sb 2.23122E − 02 1.59726E − 02 4.09333E − 02 7.13556E − 02 1.73455E − 01
Te 2.75395E − 02 1.92004E − 02 5.04211E − 02 9.70911E − 02 2.05034E − 01
I 3.20971E − 02 2.24758E − 02 6.03152E − 02 1.48746E − 01 2.41631E − 01

Tl 1.14776E − 02 5.86407E − 03 2.19190E − 02 5.80388E − 02 1.55972E − 01
Pb 1.73210E − 02 9.99471E − 03 2.46831E − 02 5.39821E − 02 1.54183E − 01
Bi 2.10260E − 02 1.27388E − 02 3.36615E − 02 6.90011E − 02 1.71433E − 01
Po 2.28227E − 02 1.59381E − 02 4.50365E − 02 8.97800E − 02 1.97231E − 01
At 2.74709E − 02 1.84208E − 02 5.35478E − 02 1.31430E − 01 2.29661E − 01
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Valence + outer core: To the valence set add the fivth,
sixth, and eighth s primitives, the sixth, seventh, and
eighth p primitives, the fifth, sixth, and seventh d primi-
tives, and the core correlating 3f2g1h set.
(HF + 3s3p3d2f1g valence + 3s3p3d3f2g1h outer core.)

4.3 The 6p block

Valence: To the SCF functions, add the first, second, and
fourth s primitives, the second, third, and fourth p primi-
tives, the first through third d primitives (the correlating d
functions), the first and second f primitives (the correlat-
ing f functions), and the valence correlating g function.
(HF + 3s3p3d2f1g valence)
Valence + outer core: To the valence set add the fifth,
sixth, and eighth s primitives, the sixth, seventh, and
eighth p primitives, the fifth, sixth and seventh d primi-
tives, the third, fourth and fifth f primitives, and the 2g1h
functions from the outer core correlating set.
(HF + 3s3p3d2f1g valence + 3s3p3d3f2g1h outer core)

5 Applications

To test the basis sets, a series of CI calculations was per-
formed on the Tl atom. The spin–orbit splitting of the Tl atom
has been the subject of several investigations [33–36]. The
experimental value is 7793 cm−1. The results for valence cor-
relation with the dz, tz, and qz basis sets are given in Table 8.
The DHF calculations include only the 6s26p1 configuration.
The calculations marked “Ref” include the 6p3 configuration,
which causes a significant decrease in the spin–orbit split-
ting. This space was the reference space in the subsequent CI
calculations. Including single and double excitations (CISD)
increases the spin–orbit splitting by an amount that increases
with basis set size. Triple excitations have very little effect
on the splitting, and are ignored in subsequent calculations.
Clearly, valence correlation is insufficient to reproduce the
experimental value. Addition of the Breit interaction cannot
make up the difference: in fact, it makes the splitting smaller
by about 140 cm−1.

The bulk of the discrepancy is made up by correlating
the 5d shell and the 5p shell, as indicated by the results in
Table 9. In this table, “internals” include single and double
excitations from the designated core shells into the valence
space, which comprises the 6s, 6p1/2 and, 6p3/2 spinors. The
remaining excitations are to the external (correlating) space.
The “core singles” excitations represent core polarization; the
core–valence doubles consist of excitation of one core elec-
tron and one valence electron into the external space, while
core doubles are excitations of two electrons from the core
into the external space. The enlargement of the correlating
space with functions that describe outer core correlation also
makes up for some of the deficiency in the valence correla-
tion due to the small size of the dz basis set. The best value
in the dz basis set is still smaller than experiment, and will

Table 8 Spin–orbit splitting of the Tl atom as a function of basis set
and valence correlation

Method dz tz qz

DHF 7759.96 7642.30 7639.88
Ref 7138.53 6977.81 6974.07
CIS 7196.45 7063.26 7055.23
CISD 7240.53 7181.73 7206.75
CISDT 7239.12 7178.50 7203.25

Table 9 Spin–orbit splitting of the Tl atom as a function of core con-
figurations added, in a dz basis set. Each row in the table represents the
addition of the specified class of configurations to the calculation pre-
sented in the previous row. The reference calculation is the calculation
designated Ref in Table 8

Configurations added 5d corr. 5d+5p corr.

Internals 7059.26 7055.50
Valence singles + doubles 7220.17 7215.97
Core singles 7242.91 7252.66
Core–valence doubles 7338.44 7405.39
Core doubles 7599.44 7729.33

be further reduced by the Breit interaction. The remaining
discrepancy with experiment comes from increasing the size
of the correlating space, as shown by calculations including
5d core–valence correlation (but not core–core correlation)
with a triple-zeta basis set, which yield a value of 7,913 cm−1

for the splitting.
The effects on the spin–orbit splitting can be rationalized

by the effective screening of the 6p spinors. Internal excita-
tions (those between occupied orbitals) reduce the splitting
because although they create core holes, they increase the
repulsion in the 6p shell and, therefore, increase the direct
screening of the 6p by other 6p electrons. Valence correla-
tion moves a certain amount of 6s density into virtual spinors,
and reduces the screening, thereby increasing the spin–orbit
splitting. Likewise, core correlation moves core density into
virtual spinors and reduces the screening. Angular correla-
tion is important because it removes density from the region
near the nucleus, where relativistic effects are largest.

6 Internet Archive

The full tables of basis sets including spin-free relativis-
tic SCF [37] and Dirac–Fock SCF coefficients are available
in ASCII format from the Dirac web site, http://
dirac.chem.sdu.dk, and as an internet archive. The spin-free
relativistic SCF coefficients include the Foldy–Wouthuysen
transformed large component coefficients that can be used
in the scalar one-electron approximation, NESC1e [38]. The
correlating, polarizing, and diffuse functions are included,
and prescriptions are given for the construction of various
contracted basis sets.
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